TRANSFUSION THERAPY AS A SOLE TREATMENT OPTION IN A THALASSEMIA PATIENTWITH ACUTE PARAPLEGIA - A CASE REPORT AND REVIEW OF LITERATURE

Sana Rashid MBBS

Sarwar Jamil Siddiqui MRCP, Section of Neurology, Department of Medicine he Aga Khan University, Karachi.

Address correspondence: sana.rashid@aku.edu

ABSTRACT

Spinal haematopoiesis is an extremely rare phenomenon in patients with Thalassemia intermedia. Various modes of therapy are available. Our patient with Thalassemia intermedia who developed paraplegia due to spinal haematopoiesisis was successfully treated with blood transfusion alone.

Key Words: Extra medullaryhaematopoiesis, Thalassemia intermedia, Paraplegia

INTRODUCTION

Thalassemia intermedia is so far recognized as a transfusion independent form of B Thallasemia¹. Paraplegia in these patients, a very rare phenomenon, is secondary to spinal haematopoiesis^{2, 3,4} and its occurrence in females is even rarer^{5.} Because of the paucity of such cases, no evidence-based guidelines are available. Treatment options includeblood transfusion, surgical decompression, radiotherapy, hydroxyurea administration and steroid therapy ,either alone or in combination. Choice of a therapeutic modality is based onpatient's clinical condition and past treatment history. We present the case of a young girl with thalassemia

We present the case of a young girl with thalassemia intermedia who developed paraplegia due to spinal haematopoiesisand was successfully treated with blood transfusion alone.

CASE REPORT

A 17 years old female, known to have thalassemia intermedia since the age of 7 years, also glucose 6-phosphate dehydrogenase (G6PD) deficient for last 3 years, functional class 1, presented in ER with 15 days history of diarrheal illness, followed by fever and difficulty in walking for one week and urinary retention for one day. She spiked fever to a maximum of 102 degree F without chills or rigors. Her gait difficulty had a very progressive course and she became bed boundwithin a week of onset. Weakness and numbness was present equally in both lower extremities. A day prior to presentation, she developed urinary retention. There was no history of trauma, backache, sore throat, rash,

blurring of vision, diplopia, facial weakness, shortness of breath, difficulty in swallowing, abdominal pain, nausea o, vomiting, jaundice or seizures and. There was no history of recent administration of any vaccine.

On examination, she was alert and oriented. Higher mental function and speech were normal. Gait could not be assessed due to lower limb weakness. All cranial nerves were intact. She had decreased tone in both lower limbs with a power of 1/5 (MRC Scale) in both lower limbs. Deep tendon reflexes were brisk bilaterally and ankle clonus was present with plantars being bilaterally extensor. A sensorylevel was found to be at D7.

Her blood workup showed: haemoglobin of 7 gram/dL and the peripheral blood film was consistentwith thalassemia intermedia. There was mild elevation in indirect bilirubin which was attributed to on-going intravascular haemolysis secondary to her blood disorder. Urine detailed report showed mild infection. Rest of the laboratory workup including electrolyteswere normal.

MRI of her dorsal spine with contrast revealed intraspinal lobulatedmasses, compressing the spinal cord and exiting nerve roots.

Diffuse altered marrow signals from all the visualized bones which are hypointense on both T1 and t2 weighted images. In addition there are also expansion of the clivus, diploic spaces of skull, sternum and ribs. There are multiple paravertebral masses in the visualized dorsal spine at multiple levels from T3-T8. Multiple lobulated masses are seen in spinal canal at multiple

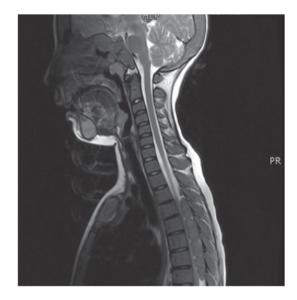


Fig 1.T2 weighted MRI Image of cervical and upper dorsal spine mid-sagittal slice

Fig 3.T2 weighted MRI Image of dorsal spine

levels starting from T3-T8. These are iso- to hypointense on both T1 and T2 and show diffuse restriction. These masses are causing significant compression of the dorsal spinal cord and pushing it anteriorly and also extending to the neural foramina at all these levels causing significant compression of exiting nerve roots. All the above described findings are in keeping with thalassemia leading to extramedullary haematopoiesis with multiple paravertebral and intraspinal lobulated masses which are compressing the spinal cord and exiting nerve roots from T3 down to T8 level.

Discussion

Thalassemia, a hereditary haemoglobinopathy has many

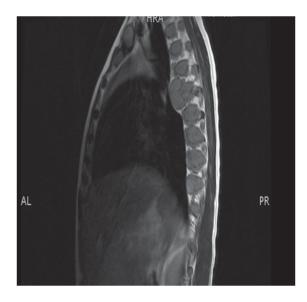


Fig 2.T2 weighted MRI Image of dorsal spine

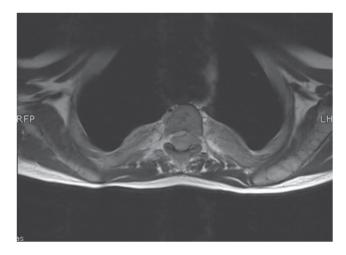


Fig 3.T1 weighted MRI Image

subtypes. Patient under discussion wassuffering from ? thalassemia intermedia .This form lies mid-way between ? thalassemia major and minor and is usually referred to as transfusion independent thalassemia . Autosomal recessive in inheritance, it is diagnosed on the basis of haemoglobin (Hb) electrophoresis that shows large amounts of Hb A? (????) and foetal Hb(?? β ?). There is scarcity of normal adult haemoglobin Hb A(?? β ?).

Inability to meet tissue demand, inadequacy of circulation and ineffective erythropoiesis form the basis of extramedullary haematopoiesis(EMH) in such patients⁶. Usual sites are liver, spleen and lymph nodes^{7,8}. However depending on the severity almost any tissue of the body

can be involved e.g., adrenal glands, thymus, hilum, prostate, kidneys, breasts, dura matter, adipose tissue, skin,broad ligaments, heart, pleura, retroperitoneal tissue, even cranial and peripheral nerves and spinal canal ^{9-16.} About 11-15% patients of Thalassemia intermedia develop Intrathoracic EMH^{2, 3.}Neurological symptoms due to these intraspinalpseudotumours are even rarer^{17.}

The first case of spinal cord compression secondary to EMH was reported by Gatto et al in 1954¹⁸. In spine, lower dorsal region is usually involved where restricted mobility and narrow spinal canal predisposes to cord compression19, 20, resulting in neurological symptoms, varying from mild back pain and paraesthesias to profound motor weakness and sphincter disturbance. Manifestations of neurological symptoms depend on the chronicity of the disease andare most commonly encountered in third and fourth decades5 but a few cases have also been seen in first ten years of age 8, 21. More cases have been reported in males as compared to females reaching a ratio of5:15. Complete paraplegia has been reported very rarely in thalassemia and occurs morefrequently with other blood disorders such as polycythaemia rubra vera and sickle cell anaemia^{5.}

Diagnosis is based on neuroimaging. Magneticresonance imaging (MRI) remains the gold standard which delineates spinal extramedullary haematopoiesisas iso-intense mass with a high spinal intensity rim on T_{\perp} weighted images and a hyperintense mass on T_{2} -weighted images 22 Gadolinium enhancementis minimal or absent differentiating it from other epidural lesions such as abscesses or metastases $^{23,\,24}$. Older inactive lesions show high signal intensity in both T_{\perp} and T_{2} weighted MR images due to fatty infiltration or lowsignal intensity in both T_{\perp} and T_{2} weighted MR images due to iron deposition $^{25-28}$. Histopathological diagnosis by biopsy is not always recommended and usually reserved for either elderly patients or in whom diagnosis is doubtful 8 .

Treatment is usually governed by patient's clinical status i.e. mode of onset and severity of the symptoms, size of the masses and past treatment history. Because of the paucity of such cases no evidence-based guidelines are available to be followed. Therapeutic modalities include surgical decompression, radiotherapy, blood transfusion, steroid therapy, hydroxyurea administration. Usually a combination of aforementioned options has been reported to give relapse free results.

Transfusion therapy helps in alleviating the symptoms by correcting anaemia which in turn reduces the tissue demand, down-regulates erythropoietin and lessens the need for EMH. Use of blood transfusion as a sole treatment option is controversial. Some schools of thought believe that it gives partial recovery and temporary relief from the symptoms²⁴ Therefore, at present it is reserved for patient with minor neurological deficits^{8,29} or in special situations like pregnancy where surgery or radiotherapy may be harmful 30. However, cases have been reported where transfusion therapy was used exclusively as the first choice 17, 19,29,32,33. Apart from being cost effective, anadded advantage of transfusion therapy from the rest of treatment options is that it can be used as a non-invasive diagnostic tool where a prompt response to bloodtransfusion supports thenotion that extramedullary haematopoiesiswas the cause of symtoms31.

Surgery has usually been reserved for patients who present with acute paraplegia. Surgical decompression by far has been mostly used giving promising results in thalassemia majorpatients Major threat in surgical decompression is increased chances of bleeding and predisposition to shock due to increased vascularity of the tissue 35.

Irradiation causes radiosensitive extramedullary hematopoietictissue to shrink resulting in clinical improvement. Almost half of the patients start benefitingwithin a week^{36, 41,42,43.} There are case reports where paraplegia has been success fully treated with radiotherapy 43,44. Radiation induces pancytopenia leading to immunosuppression, local side effects of radiotherapy and cumbersome calculation of irradiationdose makesit a less popular choice. It carries ahigh risk of recurrenceup to ^{19-37%3,36.}

Hydroxyurea stimulates synthesis of foetalhaemoglobin and therefore decrease the need for EMH ^{45, 46.} Patients with spinal EMH have been successfullytreated with hydroxyurea alone ^{46.} especially those who due to alloimmunisation are unable to receive blood transfusion ^{47.} It is also given in combination with transfusion ^{45, 48} and radiotherapy ^{45, 49.}

Steroids by their property of reducing inflammation and oedema have also been used as adjunct therapy either postoperatively or along with blood transfusion ¹ A case report suggests that Dexamethasone inbolus dose of 10 mg followed by 4 mg every 6 hours for 3 days with transfusion gives promising response⁵⁰.

Conclusion

As paraplegia resulting from cord compression due to extramedullary haematopoiesis is extremely rare, it surfaces as both a diagnostic as well as a therapeutic challenge. Opting for single or a combination of therapies depends on patients past medical history and current severity of symptoms. Blood transfusion is a cost effective treatment of choice giving reasonable recovery once optimum levels of Hb have been achieved. Target Hb should be above 10 gm.%.⁵¹.It also serves as a non diagnostic invasive tool.Follow up MRI every 6 months for two years, followed by once in a year, helps in keeping a close surveillance of Thalassemia patients with spinal haematopoiesis³⁴.

Conflict of interest statement:The authors have no conflicts ofinterest to disclose. This study did not receive external funding.

References:

- Weatherall DJ, Clegg JB. The thalassemia syndromes. Oxford.2001;4.
- Dore F, Cianciulli R, Ravasio S, et al: Incidence and clinicalstudy of ectopic erythropoiesis in adult patients withthalassemia intermedia. Med Int. 1992;7:137-140.
- Papavasiliou C: Tumor simulating intrathoracicextramedullaryhemopoiesis. Am J Roentgenol. 1965;93:695-702.
- 4. Aliberti B, Patrikiou A, Terentiou A, Frangatou S, PapadimitriouA: Spinal cord compression due to extramedullaryhaematopoiesis in two patients with thalassaemia: completeregression with blood transfusion therapy. J Neurol.2001,248:18-22.
- Salehi SA, Koski T, Ondra SL. Spinal cord compression inbetathalassemia: case report and review of the literature. SpinalCord. 2004;42:117-123.
- Taher A, Ismaeel H, Cappellini MD.
 Thalassaemiaintermedia:revisited. Blood Cells Mol Dis.2006; 37:12-20.
- 7. Fucharoen S, Winichagoon P. Clinical and hematologic aspectsof hemoglobin E-thalassemia. CurrOpinHematol.2000; 7:106-112.
- 8. Chehal A, Aoun E, Koussa S, Skoury H, Koussa S, Taher A. Hypertransfusion: a successful method of treatment in thal assemiaintermedia patients with spinal cord compressionsecondary to extramedullaryhematopoiesis. Spine. 2003;28(13): E245-249.

- Aessopos A, Tassiopoulos S, Farmakis D, Moyssakis I, Kati M,Polonifi K, Tsironi M. Extramedullaryhematopoiesisrelatedpleural effusion: the case of beta-thalassemia. Ann ThoracSurg.2006;81:2037-2043.
- 10. Chuang CK, Chu SH, Fang JT, Wu JH.Adrenal extramedullaryhematopoietictumor in a patient with beta-thalassemia.J Formos Med Assoc. 1998;97:431-433.
- Kumar A, Aggarwal S, de Tilly LN.Case of the season. Thalassemia major with extramedullaryhematopoiesis theliver. Semin Roentgenol. 1995;30:99-101.
- 12. Brannan D.Extramedullaryhematopoiesis in anemias.Bull Johns Hopkins Hosp. 1927; 41:104- 135.
- 13. Ross P, Logan W (1969) Roentgen findings in extramedullaryhematopoiesis. AJR Am J Roentgenol. 1969;106:604-613.
- 14. SaghafiMassoud, Shirdel Abbas, LariShahrzadM. Extramedullaryhematopoiesis with spinal cord compression in?-thalassemia intermedia. Eur J Interl Med. 2005;16:596-597.
- 15. Tan TC, Tsao J, Cheung FC: Extramedullaryhematopoiesis inthalassemia intermedia presenting as paraplegia. J ClinNeurosci.2002;9:721-5.
- 16. Turgut B, Pamuk GE, Vural O, Demir M, Unlu E, Celik H: Aninteresting presentation of intrathoracic EMH in a patient withthalassemia intermedia. Clin Lab Haematol. 2003;25: 409-11.
- 17. Aliberti B, Patrikiou A, Terentiou A, Frangatou S, PapadimitriouA: Spinal cord compression due to extramedullaryhaematopoiesis in two patients with thalassaemia: completeregression with blood transfusion therapy. J Neurol. 2001;248:18-22.
- Gatto I, Terrana V, Biondi L. Compression sulspinale da proliferazione di midolloosseonellaspazioepidurale in soggettoaffetto da malattia di Colley splenectomizzato. Hematologica.1954; 38:61-75.
- 19. Issargisil S,Piankijagum A, Prawase W. Spinal cordcompression in thalassemia. Report of 12 cases and recommendationsfor treatment. Arch Intern Med . 1981;141:1033-1036.
- 20. Tan TC, Tsao J, Cheung FC. Extramedullaryhaemopoiesis inthalassemia intermedia presenting as paraplegia. J ClinNeurosci. 2002;9(6):721-725.

- Cardia E, Toscano S, La Rosa G, Zaccone C, d'AvellaD, Tomasello F. Spinal cord compression in homozygous betathalassemiaintermedia. Pediatr Neurosurg. 1994; 20:186-189.
- Munn RK, Kramer CA, Arnold SM. Spinal cord compressiondue to extramedullaryhematopoiesis in beta-thalassemiaintermedia. Int J Radiat Oncol Biol Phys. 1998;42(3):607-609.
- 23. Lau SR, Chan O, Chow Y. Cord compression due toextramedullaryhematopoiesis in a patient with thalassemia. Spine. 1994;19:2467-2470.
- 24. Coskun E, Keskin A, Suzer T, Sermez Y, Kildaci T, Tahta K. Spinal cord compression secondary to extramedullaryhematopoiesis in thalassemia intermedia. Eur Spine J.1998;7:501-504.
- Dibbern DA, Loevner LA, Lieberman AP, Salhany KE, Freese A, Marcotte PJ.MR of thoracic cord compression caused byepidural extramedullaryhematopoiesis in myelodysplastic syndrome.
 AJNR Am J Neuroradiol. 1997;18:363-366.
- 26. Yamato M, Fuhrman C .Computed tomography of fattyreplacement in extramedullaryhematopoiesis. J Comput AssistedTomogr.1987;11:541-542.
- 27. Savader S, Otero R, SavaderB .MR imaging of intrathoracicextramedullaryhematopoiesis.J Comput Assist Tomogr. 1988;12:878-880.
- 28. Mesurolle B, Sayag E, Meingan P, Lasser P, Duvillard P, Vanel D. Retroperitoneal extramedullaryhematopoiesis: sonographic,CT and MR imaging appearance. AJR Am J Roentgenol. 1996; 167:1139-1140.
- 29. Lee AC, Chiu W, Tai KS, Wong V, Peh WC, Lau YL. Hypertransfusion for spinal cord compression secondary toextramedullary erythropoiesis. Pediatr Hematol Oncol. 1996;13:89-94.
- 30. Phupong V, Uerpairojkij B, Limpongsanurak S. Spinal cordcompression: a rareness in pregnant thalassemic women. JObstetGynaecol Res. 2000;26(2): 117-120.
- 31. Parsa K, Oreizy. Nonsurgical approach to paraparesisdue to extramedullaryhematopoiesis. J Neurosurg.1995;82:657-660.
- 32. Hassoun H, Lawn-Tsao L, Langevin ER, Lathi ES, Palek J.Spinal cord compression secondary to extramedullaryhematopoiesis:anoninvasive management based on MRI. Am Hematol. 1991;37:201-203.
- 33. Tai SM, Chan JS, Ha SY, Young BW, Chan MS.Successfultreatment of spinal cord compression secondary toextramedullary hematopoietic mass by hypertransfusion in apatient with thalassemia

- major. PediatrHematolOncol.2006;23:317-321.
- 34. Sbeih, et al.Spinal cord compression by extramedullaryhaematopoietic tissue in a patient with ?-thalassaemia.Pan Arab Journal of Neurosurgery.2008;Volume 12,no. 1.
- 35. Lau SR, Chan O, Chow Y. Cord compression due toextramedullaryhematopoiesis in a patient with thalassemia. Spine. 1994;19:2467-2470.
- 36. Jackson DV Jr, Randall ME, Richards F 2nd. Spinal cordcompression due to extramedullaryhematopoiesis in thalassemia:long-term follow-up after radiotherapy. Surg Neurol. 1988;29:388-392.
- 37. Amirjamshidi A, Abbassioun K, Ketabchi SE. Spinalextradural hematopoiesis in adolescents with thalassemia. ChildsNervSyst.1991;7:223 225.
- Luitjes WF, Braakman R, Abels J. Spinal cord compressionin a new homozygous variant of betathalassemia. Casereport. J Neurosurg. 1982;57:846-848.
- 39. Mann KS, Yue CP, Chan KH, Ma LT, NganH.Paraplegiadue to extramedullaryhematopoiesis in thalassemia. Case report.J Neurosurg.1987;66:938-940.
- 40. Niggeman P, Krings T, Hans F, Thron A. Fifteen year-followupof a patient with beta thalassemia and extramedullaryhematopoietic tissue compressing the spinal cord. Neuroradiology. 2005; 47: 263-266.
- 41. Singhal S, Sharma S, Dixit S, De S, Chander S, Rath GK, MehtaVS. The role of radiation therapy in the management of spinal cord compression due to extramedullaryhematopoiesis in thalassemia. J NeurolNeurosurg Psychiatry .1992;55:310-312.
- 42. Kaufmann T, Coleman M, Giardina P, Nisce LZ .The roleof radiation therapy in the management of hematopoietic neurologiccomplications in thalassemia. ActaHaematol.1991;85:156-159.
- 43. M. Malik etal. Paraplegia due to extramedullaryhematopoiesis inthalassemia treated successfully with radiationtherapy. Haematologica. 2007;92:(3)e28-e30.
- 44. Husam Al-Habib, , NedimHadzikaric.Spinal cord compression due to intraspinal extramedullary hematopoiesis in thalassemia intermedia.Neurosciences.2007; Vol. 12 (3): 261-264.
- 45. Cianciulli P, di Toritto TC, Sorrentino F, Sergiacomi L, Massa A, Amadori S. Hydroxyurea therapy in paraparesis and caudaequina syndrome due to extramedullary haematopoiesis in

- thalassaemia:improvement of clinical and haematological parameters.Eur J Haematol.2000;64:426-429.
- 46. Cario H, Wegener M, Debatin KM, Kohne E. Treatmentwith hydroxyurea in thalassemia intermedia with paravertebralpseudotumors of extramedullaryhematopoiesis. Ann Hematol .2002; 81:478-482.
- 47. Olivieri NF, Rees DC, Ginder GD, Thein SL, Brittenham GM,Waye JS, WeatherallDJ.Treatment of thalassemia majorwith phenylbutyrate and hydroxyurea. Lancet 1997;350:491-492.
- 48. Konstantopoulos K, Vagiopoulos G, Kantouni R, Lymperi S, Patriarcheas G, Georgakopoulos D, Fessas P. A case ofspinal cord compression by extramedullary haematopoiesis in athalassaemia patient: a putative role for hydroxyurea? .Haematologica.2008;77:352-354.
- 49. Cianciulli P, Sorrentino F, Morino L, Massa A, Sergiacomi GL, Donato V, Amadori S. Radiotherapy combined witherythropoietin for the treatment of extramedullaryhematopoiesisin an alloimmunized patient with thalassemia intermedia. AnnHematol 1996,72:379-381.
- 50. VinayaGaduputi,JayanthiLoganathan,Suresh Kumar Nayudu, Sridhar Chilimuri. Beta-Thalassemia Presenting as an Acute Neurological complication. 2011;2:58-61.
- 51. RachidHaida, Hani Mhaidli, Ali T. Taher. Paraspinalextramedullaryhematopoiesis in patients with thalassemia intermedia. Eur Spine J. 2010;19:871-878.